NAME:	Centre/Index No	/
Signature:		
P525/1		
CHEMISTRY	(4)	
PAPER 1	IM PI	

MATIGO MOCK EXAMINATION 2022 UGANGA ADVANCED CERTIFICATE OF EDUCATION CHEMISTRY

Paper 1 2 Hours 45 Minutes

INSTRUCTIONS TO CANDIDATES

2 HOURS 45 Minutes.

- Answer All Questions in Section A and Six Questions in Section B.
- All Questions must be answered in the spaces provided.
- The Periodic Table, with relative atomic masses, is supplied at the end of the paper.
- Mathematical tables (3- figure tables) are adequate or non-programmable scientific electronic calculators may be used.
- Illustrate your answer with equations where applicable.

	FOR EXAMINER'S USE ONLY																	
1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Answer all questions in this section

1.	An el	An element Z has atomic number 29.							
	(a)	(i)	Write the electronic configuration of \mathbf{Z} .						
				(1 Mark)					
		(ii)	State the block of the periodic table in which \mathbf{Z} is reason for your answer.	found and give a					
				(1 Mark)					
		(iii)	State whether \mathbf{Z} is a transition element or non-tran and why.	sition element					
				(1 Mark)					
	(b)	when	what is observed and write equations for the reaction aqueous ammonia is added drop-wise until in excess mium (III) sulphate.						
				(21/ Maylea)					
				(2½ Marks)					
2.	(a)	(i)	Write the equation for the hydrolysis of sodium et aqueous solution.	hanoate in					
				(1Mark)					
		(ii)	Write an expression for the hydrolysis constant, K ethanoate.	h, of sodium					
				(1 Mark)					

(b)	The pH of a 0.1M aqueous sodium ethanoate solution is 8.9. Calculate the
	hydrolysis constant of the solution. $(K_w = 1 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6})$.

(3 Marks)

3. Complete the following equations and in each case outline a mechanism for the reaction.

(a)
$$CH_3COCH_3 + H_2NOH \xrightarrow{H^+}$$

3 Marks

(b)
$$\langle \bigcirc \rangle$$
 + $CH_3COBr \longrightarrow FeCl_3 \longrightarrow$

3 Marks

4. State the properties of the following compounds in which boron resembles silicon, but differs from aluminium. (5 Marks)

ut differs from alumini		(5 Iviaiks)			
Compound	Boron-Silicon	Aluminium			
Oxides					
Hydrides					

- 5. 16 cm³ of 0.1M hydrochloric acid completely neutralized ammonia in 25 cm³ of the aqueous layer, if 5.5 cm³ of 0.01M hydrochloric acid was required to neutralize 25 cm³ of the ether layer, calculate,
 - (a) The distribution coefficient of ammonia between water and ether at 25 °C.

(3 Marks)

(b) The mass of ammonia extracted by shaking 1000 cm³ of aqueous solution containing 50g of ammonia with 500 cm³ of ether at 25 ⁰C.

(2 Marks)

6.	(a)	(i)	Give the names a	and form	nulae of ar	ny ores of Z	inc.	
		(ii)	Describe briefly concentrated.	how on	e of the or	es can be u	sed in the	(2 marks) extraction is
	(b)	drops	what is observed w of ammonium chlo gen phosphate solu	oride sol	lution follo	wed by a fe	ew drops o	of disodium
7.	Show	v how tl	he following conv	version	s could be	carried or	ut.	(1 mark)
	(a)		CH ₂ OH	to				
	(b)	CH₃C	CH ₂ CH = CH ₂ fro	m ethy	ne.			(2½ Marks)
								(3 Marks)

8.	(a)	Polonium, $^{216}_{84}Po$ undergoes radioactive decay to give elements X an Y according to the following equation: $^{216}_{84}Po \longrightarrow X + \beta \longrightarrow Y + \alpha$.	
		Write the: (i) atomic numbers of X an Y.	
		(1 Mark)	
		(ii) mass numbrs of X an Y.	
		(1 Mark)	
	(b)	Calculate the half life of Y. (The decay constant of Y is $6.54X10^{-4} \text{ min}^{-1}$)	١.
		(2 Marks)	
9.	solu pota few	appound P is a blue-green solid. P dissolved in water to give a pale blue tion. The solution of P formed a brown precipitate when reacted with ssium hexacyanoferrate (II) solution and a reddish-brown solution when a drops of iron (III) chloride solution were added to it. When P was heated we tentrated sulphuric acid, ethanoic acid was formed.	ith
	(a)	Identify P . (1 Mark)	
	(b)	Write the equation for the reaction that took place when ${\bf P}$ was heated with concentrated sulphuric acid.	ith
		(1½ Marks)	
	(c)	Write the equation(s) for the reaction(s) that would take place when exce	ess

(1½ Marks)

ammonia solution is added to a solution of **P**.

SECTION B (54 MARKS)

Answer ANY six questions in this section

10.	A hydrony 54.	cocarbon W contains 88.8% by mass of carbon. Its relative formula mass is
	(a)	Calculate the molecular formula of W.
	(b)	(4 Marks) Write down all the possible isomers of W and name each of them according to the IUPAC system.
		(2 Marks)
	(c)	One of the isomers of W gives positive results with Tollen's reagent. Write down the isomer which gives positive results with Tollen's reagent and explain what is observed.
		(3 Marks)
		(5 Marks)
11	(a)	25 cm ³ of a solution containing a mixture of sodium carbonate and sodium hydrogen carbonate required 15 cm ³ of 0.5 M hydrochloric acid for complete reaction using phenolphthalein indicator. 25 cm ³ of the solution of the mixture required 34.5 cm ³ of the acid using methyl orange indicator. Calculate the mass of sodium carbonate and sodium hydrogen carbonate in the solution in grams per litre.

6 Marks

(b) Concentrated nitric acid is 70%(w/w) and has a density of 1.42g cm⁻³. Calculate the molarity of the concentrated nitric acid.

3 Marks

12. (a) Define 'electrolytic conductivity' (1 Mark)

(b) The molar ionic conductivity at infinite dilution of some ionic species are shown below:

Ion	$\lambda^{o}(\Omega^{-1}cm^{2}mol^{-1})$
Na ⁺	50.1
OH^{-}	198.6
H^+	349.8
Cl-	76.4

Calcu	late the	electrolytic conductivities for:	
	(i)	0.01M sodium hydroxide solution.	
			(2.14.1.)
			(2 Marks)
	(ii)	a solution made by mixing 50 cm ³ of 0.01M sodium 50 cm ³ of 0.02M hydrochloric acid.	n hydroxide and
			(5 Marks)
(c)	state t	two uses of conductivity measurements.	,

(1 Mark)

13.	(a)	State: (i)	the Distribution law.	
				(3½ Marks)
		(ii)	the conditions under which the Distribution law is v	alid.
				(1½ Marks)
	(b)	shaken partitio	on an aqueous solution containing 10 g of a composition with 100 cm ³ of benzene. \mathbf{Q} is more soluble in benzene coefficient of \mathbf{Q} between benzene and water is 12 ate the mass of \mathbf{Q} left in the aqueous layer.	zene and the
				(3 Marks)
	(c)	State o	one application of partition of solutes.	

(1 Mark)

- 14. (a) Iron (II) sulphate is normally used to standardize a solution of potassium manganate (VII) acidified using sulphuric acid.
 - (i) Write the equation for the reaction between potassium manganate (VII) and iron (II) sulphate.

(1½ Marks)

(ii) State why hydrochloric acid is not used to acidify potassium manganate (VII) solution.

(1½ Marks)

(b) 25 cm³ of an acidified solution of 0.02M potassium manganate (VII) reacted exactly with 25 cm³ of sodium nitrite. Potassium manganate (VII) reacts with sodium nitrite according to the following equation.

 $2MnO_4^-(aq) + 5NO_2^-(aq) + 6H^+(aq)$ \longrightarrow $2Mn^{2+}(aq) + 5NO_3^-(aq) + 3H_2O(1)$ Calculate the concentration of the sodium nitrite in moles per litre.

			(4 Marks)
15.	(a)	Define the term a buffer solution.	(2 Marks)
	(b)	Calculate the mass of sodium ethanoate that should be adde 0.1M ethanoic acid solution in order to produce a solution of	
		(K_a for ethanoic acid = 1.8 x 10 ⁻⁵).	(5 Marks)
	(c)	State what would happen to the ph of the solution in (b), if of the following were added	a small amount
		(i) sodium hydroxide solution.	(½ Mark)
		(ii) hydrochloric acid.	(½ Mark)
	(d)	State one biological application of a buffer solution	(1 Mark)

16.	Evnlain	the	following	observations.	
10.	Explain	une	IOHOWING	observations.	

(a) Although Zinc belongs to the d-block of the periodic Table, is not a true transition metal. (3 Marks)

(b) When silver nitrate solution is added to $CrCl_3.6H_2O$, one mole of this compound produces 2 moles of silver chloride as white precipitate instead of 3 moles. (3 Marks)

(c) The most stable oxidation states of manganese and iron are +2 and +3 respectively. (3 Marks)

17.		the reagents that can be used to distinguish between each of the following of chemical species. State what would be observed in each case.	owing
	(a)	$(CH_3)_3COH$ and $(CH_3)_3CCH_2OH$.	
	•••••	(3 1	Marks)
	(b)	CH ₃ COH and CH ₃ COCH ₃ .	
		(3 1	
	(c)	CH ₃ CH ₂ COOH and HCOOH.	
	•••••	(3.1	 Marke)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
$^{1.0}_{1}H$																$^{1.0}_{1}H$	^{4.0} ₂ He
^{6.9} ₃ Li	^{9.0} ₄ Be	TRANSITION ELEMENTS									^{10.8} ₅ B	¹² ₆ C	¹⁴ ₇ N	¹⁶ ₈ O	¹⁹ ₉ F	^{20.2} ₁₀ Ne	
^{23.0} ₁₁ Na	²⁴ ₁₂ Mg	$\frac{27.0}{13}Al \frac{28.1}{14}Si$											^{28.1} ₁₄ Si	^{31.0} ₁₅ P	$^{32.1}_{16}S$	^{35.5} Cl	$^{40}_{18}Ar$
^{39.1} ₁₉ K	^{40.1} Ca	^{45.0} ₂₁ Sc	^{47.9} Ti	^{50.9} V	^{52.0} ₂₄ Cr	^{54.9} ₂₅ Mn	^{55.8} ₂₆ Fe	^{58.9} Co	^{58.7} ₂₈ Ni	^{63.5} ₂₉ Cu	$^{65.7}_{30}$ Zn	^{69.7} ₃₁ Ga	$^{72.6}_{32}Ge$	$^{74.9}_{33}$ As	$^{79.0}_{34}Se$	$^{79.9}_{35}Br$	^{83.8} ₃₆ Kr
^{85.5} ₃₇ <i>Rb</i>	^{87.6} ₃₈ Sr	^{88.9} Y	$^{91.2}_{40}Zr$	^{92.9} ₄₁ Nb	^{95.9} ₄₂ Mo	^{98.9} Tc	¹⁰¹ ₄₄ Ru	¹⁰³ ₄₅ Rh	¹⁰⁶ ₄₆ Pd	¹⁰⁸ ₄₇ Ag	¹¹² ₄₈ Cd	¹¹⁵ ₄₉ <i>In</i>	¹¹⁹ ₅₀ Sn	¹²² ₅₁ Sb	¹²⁸ ₅₂ Te	¹²⁷ ₅₃ I	¹³¹ ₅₄ Xe
¹³³ ₅₅ Cs	¹³⁷ ₅₆ Ba	¹³⁹ La	¹⁷⁸ Hf	¹⁸¹ Ta	¹⁸⁴ W	¹⁸⁶ ₇₅ Re	¹⁹⁰ ₇₆ Os	¹⁹² <i>Ir</i>	¹⁹⁵ ₇₈ Pt	¹⁹⁷ ₇₉ Au	²⁰¹ ₈₀ Hg	²⁰⁴ ₈₁ Tl	²⁰⁷ ₈₂ Pb	²⁰⁹ ₈₃ Bi	²⁰⁹ ₈₄ Po	²¹⁰ ₈₅ At	²²² ₈₆ Rn
²²³ ₈₇ <i>Fr</i>	²²⁶ ₈₈ Ra																
			¹³⁹ ₅₇ <i>La</i>		¹⁴¹ ₅₉ Pr	¹⁴⁴ ₆₀ Nd	¹⁴⁵ ₆₁ Pm	¹⁵⁰ ₆₂ Sm	¹⁵² ₆₃ Eu	¹⁵⁷ ₆₄ Gd	¹⁵⁹ Tb	¹⁶² ₆₆ Dy	¹⁶⁵ Ho	¹⁶⁷ ₆₈ Er	¹⁶⁹ Tm		¹⁷⁵ ₇₁ Lu
			²²⁷ ₈₉ Ac	²³² ₉₀ Th	²³¹ ₉₁ Pa	²³⁸ ₉₂ U	²³⁷ ₉₃ Np	²⁴⁴ ₉₄ Pu	²⁴³ ₉₅ Am	²⁴⁷ ₉₆ Cm	²⁴⁷ ₉₇ <i>Bk</i>	²⁵¹ ₉₈ Cf	²⁵⁴ ₉₉ Es	²⁵⁷ ₁₀₀ Fm	²⁵⁶ ₁₀₁ M v	²⁵⁴ ₁₀₂ No	₁₀₃ Lw

END